Synthetic Photosynthesis: Advances Of New Systems In Industry The Viability Of Photovoltaic Fuels
Download ---> https://urloso.com/2tkOQ6
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO2 into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.
The aquatic species program report of 1998 (Sheehan et al. 1998) and the recently published National Algal Biofuels Technology Roadmap (2009) each conclude that photosynthesis could support viable fuel processes given advances in organism and process productivities. Organism engineering, direct production, product secretion, and process optimization are areas for improvement to achieve viability. The direct photosynthetic platform is an alternative approach that addresses many of these ideas and offers efficiencies nearest to a thermodynamic maximum with more advantageous process economics.
The fuels of the future will be clean, renewable, and secure. ASU has long been a leader in renewable energy, particularly in developing of solar energy in a variety of useful forms. Current projects include cutting-edge and applied research in photovoltaic materials and systems, photosynthetic biofuels, and algae-based fuels, as well as research on policy and decision-making related to renewable energy.
This will require concerted research and development efforts in a number of key areas including photovoltaics, electrolysis and fuel cells, catalysts, efficient CO2 collection, hydrogen storage and distribution, and synthetic fuel production from CO and H2 feedstocks. Only a joint and concerted effort by government, industry and academia will lead to measurable progress in this critical endeavor. 59ce067264
https://www.bodiedbyade.com/forum/general-discussions/pennywise-costume-buy